Показано с 1 по 2 из 2

Тема: Что такое звук?

  1. #1
    Познающий Аватар для Yura
    Регистрация
    06.07.2009
    Сообщений
    40

    По умолчанию Что такое звук?

    Что такое звук?

    Звук, в широком смысле — упругие волны, распространяющиеся в среде и создающие в ней механические колебания; в узком смысле — субъективное восприятие этих колебаний специальным органом чувств человека и других животных.

    Как и любая волна, звук характеризуется амплитудой и частотой. Считается, что человек слышит звуки в диапазоне частот от 16 Гц до 20 000 Гц. Звук ниже диапазона слышимости человека называют инфразвуком, выше, до 1 МГц — ультразвуком, от 1 МГц до 10 МГц — гиперзвуком. Среди слышимых звуков следует также особо выделить фонетические, речевые звуки и фонемы, из которых состоит устная речь, и музыкальные звуки, из которых состоит музыка.


    Понятие о звуке

    Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение — звуковым давлением.

    Если произвести резкое смещение частиц упругой среды в одном месте, например, с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разряжения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

    В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.

    Физические параметры звука

    Колебательная скорость измеряется в м/с или см/с. В энергетическом отношении реальные колебательные системы характеризуются изменением энергии вследствие частичной её затраты на работу против сил трения и излучение в окружающее пространство. В упругой среде колебания постепенно затухают. Для характеристики затухающих колебаний используются коэффициент затухания (S), логарифмический декремент и добротность (Q). Коэффициент затухания отражает быстроту убывания амплитуды с течением времени.

    Уменьшение амплитуды за один цикл характеризуется логарифмическим декрементом. Логарифмический декремент равен отношению периода колебаний ко времени затухания.

    Если на колебательную систему с потерями действовать периодической силой, то возникают вынужденные колебания, характер которых в той или иной мере повторяет изменения внешней силы. Частота вынужденных колебаний не зависит от параметров колебательной системы. Напротив, амплитуда зависит от массы, механического сопротивления и гибкости системы. Такое явление, когда амплитуда колебательной скорости достигает максимального значения, называется механическим резонансом. При этом частота вынужденных колебаний совпадает с частотой собственных незатухающих колебаний механической системы. При частотах воздействия, значительно меньших резонансной, внешняя гармоническая сила уравновешивается практически только силой упругости. При частотах возбуждения, близких к резонансной, главную роль играют силы трения. При условии, когда частота внешнего воздействия значительно больше резонансной, поведение колебательной системы зависит от силы инерции или массы.

    Свойство среды проводить акустическую энергию, в том числе и ультразвуковую, характеризуется акустическим сопротивлением. Акустическое сопротивление среды выражается отношением звуковой плотности к объёмной скорости ультразвуковых волн. Удельное акустическое сопротивление среды устанавливается соотношением амплитуды звукового давления в среде к амплитуде колебательной скорости её частиц. Чем больше акустическое сопротивление, тем выше степень сжатия и разряжения среды при данной амплитуде колебания частиц среды. Численно, удельное акустическое сопротивление среды (Z) находится как произведение плотности среды на скорость (с) распространения в ней ультразвуковых волн. Удельное акустическое сопротивление измеряется в Па•с/м (см) или дин•с/см3 (СГС); 1 Па•с/м = 10-1 дин • с/см3. Значение удельного акустического сопротивления среды часто выражается в г/с•см2, причём 1 г/с•см2 = 1 дин•с/см3. Акустическое сопротивление среды определяется поглощением, преломлением и отражением ультразвуковых волн. Звуковое или акустическое давление в среде представляет собой разность между мгновенным значением давления в данной точке среды при наличии звуковых колебаний и статического давления в той же точке при их отсутствии. Иными словами, звуковое давление есть переменное давление в среде, обусловленное акустическими колебаниями. Максимальное значение переменного акустического давления (амплитуда давления) может быть рассчитано через амплитуду колебания частиц. где Р — максимальное акустическое давление (амплитуда давления); f — частота; с — скорость распространения ультразвука;  — плотность среды; А — амплитуда колебания частиц среды. На расстоянии в половину длины волны (/2) амплитудное значение давления из положительного становится отрицательным, то есть разница давлений в двух точках, отстоящих друг от друга на /2 пути распространения волны, равна 2Р. Для выражения звукового давления в единицах СИ используется Паскаль (Па), равный давлению в один ньютон на метр квадратный (Н/м2). Звуковое давление в системе СГС измеряется в дин/см2; 1 дин/см2 = 10-1Па = 10-1Н/м2. Наряду с указанными единицами часто пользуются внесистемными единицами давления — атмосфера (атм) и техническая атмосфера (ат), при этом 1 ат = 0,98o106 дин/см2 = 0,98o105 Н/м2. Иногда применяется единица, называемая баром или микробаром (акустическим баром); 1 бар = 106 дин/см2. Давление, оказываемое на частицы среды при распространении волны, является результатом действия упругих и инерционных сил. Последние вызываются ускорениями, величина которых также растёт в течение периода от нуля до максимума (амплитудное значение ускорения). Кроме того, в течение периода ускорение меняет свой знак. Максимальные значения величин ускорения и давления, возникающие в среде при прохождении в ней ультразвуковых волн, для данной частицы не совпадают во времени. В момент, когда перепад ускорения достигает своего максимума, перепад давления становится равным нулю. Амплитудное значение ускорения (а) определяется выражением: a = 2A = (2f)2 A Если бегущие ультразвуковые волны наталкиваются на препятствие, оно испытывает не только переменное давление, но и постоянное. Возникающие при прохождении ультразвуковых волн участки сгущения и разряжения среды создают добавочные изменения давления в среде по отношению к окружающему её внешнему давлению. Такое добавочное внешнее давление носит название давления излучения (радиационного давления). Оно служит причиной того, что при переходе ультразвуковых волн через границу жидкости с воздухом образуются фонтанчики жидкости и происходит отрыв отдельных капелек от поверхности. Этот механизм нашел применение в образовании аэрозолей лекарственных веществ. Радиационное давление часто используется при измерении мощности ультразвуковых колебаний в специальных измерителях — ультразвуковых весах.

    Распространение ультразвука

    Распространение ультразвука — это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне. Звуковая волна распространяется в веществе, находящемся в газообразном, жидком или твёрдом состоянии, в том же направлении, в котором происходит смещение частиц этого вещества, то есть она вызывает деформацию среды. Деформация заключается в том, что происходит последовательное разряжение и сжатие определённых объёмов среды, причём расстояние между двумя соседними областями соответствует длине ультразвуковой волны. Чем больше удельное акустическое сопротивление среды, тем больше степень сжатия и разряжения среды при данной амплитуде колебаний. Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость, с которой частицы колеблются около среднего положения равновесия называется колебательной скоростью. Колебательная скорость частиц изменяется согласно уравнению: V = U sin (2ft + G), где V — величина колебательной скорости; U — амплитуда колебательной скорости; f — частота ультразвука; t — время; G — разность фаз между колебательной скоростью частиц и переменным акустическим давлением. Амплитуда колебательной скорости характеризует максимальную скорость, с которой частицы среды движутся в процессе колебаний, и определяется частотой колебаний и амплитудой смещения частиц среды. U = 2fA, где А — амплитуда смещения частиц среды.!

    Дифракция, интерференция

    При распространении ультразвуковых волн возможны явления дифракции, интерференции и отражения.

    Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет. При одновременном движении в ткани нескольких ультразвуковых волн в определённой точке среды может происходить суперпозиция этих волн. Такое наложение волн друг на друга носит общее название интерференции. Если в процессе прохождения через биологический объект ультразвуковые волны пересекаются, то в определённой точке биологической среды наблюдается усиление или ослабление колебаний. Результат интерференции будет зависеть от пространственного соотношения фаз ультразвуковых колебаний в данной точке среды. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях способствует увеличению амплитуды ультразвуковых колебаний. Если же ультразвуковые волны приходят к конкретному участку в противофазе, то смещение частиц будет сопровождаться разными знаками, что приводит к уменьшению амплитуды ультразвуковых колебаний.

    Интерференция играет важную роль при оценке явлений, возникающих в тканях вокруг ультразвукового излучателя. Особенно большое значение имеет интерференция при распространении ультразвуковых волн в противоположных направлениях после отражения их от препятствия.

    Поглощение ультразвуковых волн

    Если среда, в которой происходит распространение ультразвука, обладает вязкостью и теплопроводностью или в ней имеются другие процессы внутреннего трения, то при распространении волны происходит поглощение звука, то есть по мере удаления от источника амплитуда ультразвуковых колебаний становится меньше, так же как и энергия, которую они несут. Среда, в которой распространяется ультразвук, вступает во взаимодействие с проходящей через него энергией и часть её поглощает. Преобладающая часть поглощенной энергии преобразуется в тепло, меньшая часть вызывает в передающем веществе необратимые структурные изменения. Поглощение является результатом трения частиц друг об друга, в различных средах оно различно. Поглощение зависит также от частоты ультразвуковых колебаний. Теоретически, поглощение пропорционально квадрату частоты. Величину поглощения можно характеризовать коэффициентом поглощения, который показывает, как изменяется интенсивность ультразвука в облучаемой среде. С ростом частоты он увеличивается. Интенсивность ультразвуковых колебаний в среде уменьшается по экспоненциальному закону. Этот процесс обусловлен внутренним трением, теплопроводностью поглощающей среды и её структурой. Его ориентировочно характеризует величина полупоглощающего слоя, которая показывает на какой глубине интенсивность колебаний уменьшается в два раза (точнее в 2,718 раза или на 37 %). По Пальману при частоте, равной 0,8 МГц средние величины полупоглощающего слоя для некоторых тканей таковы: жировая ткань — 6,8 см; мышечная — 3,6 см; жировая и мышечная ткани вместе — 4,9 см. С увеличением частоты ультразвука величина полупоглощающего слоя уменьшается. Так при частоте, равной 2,4 МГц, интенсивность ультразвука, проходящего через жировую и мышечную ткани, уменьшается в два раза на глубине 1,5 см. Кроме того, возможно аномальное поглощение энергии ультразвуковых колебаний в некоторых диапазонах частот — это зависит от особенностей молекулярного строения данной ткани. Известно, что 2/3 энергии ультразвука затухает на молекулярном уровне и 1/3 на уровне микроскопических тканевых структур. Глубина проникновения ультразвуковых волн Под глубиной проникновения ультразвука понимают глубину, при которой интенсивность уменьшается на половину. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину.

    Рассеяние ультразвуковых волн

    Если в среде имеются неоднородности, то происходит рассеяние звука, которое может существенно изменить простую картину распространения ультразвука и, в конечном счете, также вызвать затухание волны в первоначальном направлении распространения. Преломление ультразвуковых волн Так как акустическое сопротивление мягких тканей человека ненамного отличается от сопротивления воды, можно предполагать, что на границе раздела сред (эпидермис — дерма — фасция — мышца) будет наблюдаться преломление ультразвуковых лучей. Отражение ультразвуковых волн На явлении отражения основана ультразвуковая диагностика. Отражение происходит в приграничных областях кожи и жира, жира и мышц, мышц и костей. Если ультразвук при распространении наталкивается на препятствие, то происходит отражение, если препятствие мало, то ультразвук его как бы обтекает. Неоднородности организма не вызывают значительных отклонений, так как по сравнению с длиной волны (2 мм) их размерами (0,1 — 0,2 мм) можно пренебречь. Если ультразвук на своём пути наталкивается на органы, размеры которых больше длины волны, то происходит преломление и отражение ультразвука. Наиболее сильное отражение наблюдается на границах кость — окружающие её ткани и ткани — воздух. У воздуха малая плотность и наблюдается практически полное отражение ультразвука. Отражение ультразвуковых волн наблюдается на границе мышца — надкостница — кость, на поверхности полых органов.

    Бегущие и стоячие ультразвуковые волны

    Если при распространении ультразвуковых волн в среде не происходит их отражения, образуются бегущие волны. В результате потерь энергии колебательные движения частиц среды постепенно затухают, и чем дальше расположены частицы от излучающей поверхности, тем меньше амплитуда их колебаний. Если же на пути распространения ультразвуковых волн имеются ткани с разными удельными акустическими сопротивлениями, то в той или иной степени происходит отражение ультразвуковых волн от пограничного раздела. Наложение падающих и отражающихся ультразвуковых волн может приводить к возникновению стоячих волн. Для возникновения стоячих волн расстояние от поверхности излучателя до отражающей поверхности должно быть кратным половине длины волны.

    Медузы и инфразвуки

    На краю «колокола» у медузы расположены примитивные глаза и органы равновесия — слуховые колбочки величиной с булавочную головку. Это и есть «уши» медузы. Однако «слышат» они не просто звуковые колебания, доступные и нашему уху, а инфразвуки с частотой 8 — 13 герц.

    Перед штормом усиливающийся ветер срывает гребни волн и захлёстывает их. Каждое такое захлопывание воды на гребне волны порождает акустический удар, создаются инфразвуковые колебания, их-то и улавливает своим куполом медуза. Колокол медузы усиливает инфразвуковые колебания (как рупор) и передаёт на «слуховые колбочки». Шторм разыгрывается ещё за сотни километров от берега, он придет в эти места примерно часов через 20, а медузы уже слышат его и уходят на глубину.

    Нужно отдать должное бионикам, которые создали электронный автоматический аппарат — предсказатель бурь, работа которого основана на принципе «инфрауха» медузы. Такой прибор может предупредить о готовящейся буре за 15 часов, а не за два, как обычный морской барометр

    Скорость звука

    Скорость звука в газах (0° С; 101325 Па), м/сАзот 334
    Аммиак 415
    Ацетилен 327
    Водород 1284
    Воздух 331,46
    Гелий 965
    Кислород 316
    Метан 430
    Угарный газ 338
    Углекислый газ 259
    Хлор 206


    Скорость звука — скорость распространения звуковых волн в среде.

    Как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях скорость звука меньше, чем в твёрдых телах.

    В воздухе при нормальных условиях скорость звука составляет 331.46 м/с (1193 км/ч).

    В воде скорость звука составляет 1485 м/с.

    В твёрдых телах скорость звука составляет 2000—6000 м/с.

    Скорость звука зависит от температуры — с ростом температуры растет и скорость звука.

    Источник: http://sound-editor.blogspot.com/

  2. #2
    Пользователь на проверке
    Регистрация
    05.12.2017
    Сообщений
    1

    По умолчанию

    Отличная статья, очень информативная и легко переваривается мозгом! Разрешите дополнить ее наглядными примерами звуков, расположенных тут: http://zvuko-fon.ru/zvuk/

Метки этой темы

Социальные закладки

Социальные закладки

Ваши права

  • Вы не можете создавать новые темы
  • Вы не можете отвечать в темах
  • Вы не можете прикреплять вложения
  • Вы не можете редактировать свои сообщения
  •